The interplay between Sudakov resummation, renormalons and higher twist in deep inelastic s

We claim that factorization implies that the evolution kernel, defined by the logarithmic derivative of the N-th moment of the structure function d ln F_2^N / d ln Q^2, receives logarithmically enhanced contributions (Sudakov logs) from a single source, na

CERN-TH/2002-294

October,2002

TheinterplaybetweenSudakovresummation,renormalonsandhighertwistindeepinelasticscattering

arXiv:hep-ph/0210429v1 30 Oct 2002E.Gardi(1,2)andR.G.Roberts(1,3)(1)(2)THDivision,CERN,CH-1211Geneva23,SwitzerlandInstitutf¨urTheoretischePhysik,Universit¨atRegensburg,D-93040Regensburg,GermanyRutherfordAppletonLaboratory,Chilton,Didcot,Oxon,OX110QX,UK(3)Abstract:Weclaimthatfactorizationimpliesthattheevolutionkernel,de nedbyNthelogarithmicderivativeoftheN-thmomentofthestructurefunctiondlnF2/dlnQ2,receiveslogarithmicallyenhancedcontributions(Sudakovlogs)fromasinglesource,namelytheconstrainedinvariantmassofthejet.Availableresultsfrom xed-ordercal-culationsfacilitateSudakovresummationuptothenext-to-next-to-leadinglogarithmicaccuracy.Weuseadditionalall-orderinformationonthephysicalkernelfromthelarge-β0limittomodelthebehaviouroffurthersubleadinglogsandexploretheuncertaintyinextractingαsandindeterminingthemagnitudeofhigher-twistcontributionsfroma

comparisonwithdataonhighmoments.

The interplay between Sudakov resummation, renormalons and higher twist in deep inelastic s相关文档

最新文档

返回顶部